Interactive Learning of Inverse Kinematics with Nullspace Constraints using Recurrent Neural Networks

TitleInteractive Learning of Inverse Kinematics with Nullspace Constraints using Recurrent Neural Networks
Publication TypeConference Paper
Year of Publication2010
AuthorsWrede S, Johannfunke M, Lemme A, Nordmann A, Rüther S, Weirich A, Steil JJ
Conference NameProc. 20. Workshop on Computational Intelligence
PublisherFachausschuss Computational Intelligence der VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik
Abstract

Industrial co-worker scenarios require a save, flexible, and efficient control of robots. Our cognitive system FlexIRob as a prototype for human robot interaction in industry allows flexible handling and fast reconfiguration of a compliant redundant robot system by use of a machine learning approach. Problem Statement: Learning inverse kinematics with redundancy resolution in physical human robot interaction.