Biblio

Found 211 results
[ Author(Desc)] Title Type Year
Search results for Steil  [Reset Search]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Shareef Z, Steil JJ.  2016.  Trajectory Optimization of COmpliant HuMANoid (COMAN) Robot Arm using Path Parameter based Dynamic Programming. Proc. IEEE Humanoids. :705–710.
Shareef Z, Reinhart F, Steil JJ.  2016.  Generalizing the Inverse Dynamic Model of KUKA LWR IV+ for Load Variations using Regression in the Model Space. Proceedings of IEEE Int. Conf. Intelligent Robots and Systems. :606–611.
Shareef Z, Mohammadi P, Steil JJ.  2016.  Improving the Inverse Dynamics Model of the KUKA LWR IV+ using Independent Joint Learning. Proceedings 7th IFAC Symposium on Mechatronic Systems. :507––512.
Soltoggio A, Steil JJ.  2012.  How Rich Motor Skills Empower Robots at Last: Insights and Progress of the AMARSi Project. KI- Künstliche Intelligenz. 26:407–410.
Soltoggio A, Lemme A, Reinhart F, Steil JJ.  2013.  Rare neural correlations implement robotic conditioning with reward delays and disturbances. Frontiers in Neurorobotics. 7:6.
Soltoggio A, Steil JJ.  2013.  Solving the distal reward problem with rare correlations. Neural Computation. 25:940–978.
Soltoggio A, Reinhart F, Lemme A, Steil JJ.  2013.  Learning the rules of a game: neural conditioning in human-robot interaction with delayed rewards.
Soltoggio A, Lemme A, Steil JJ.  2012.  Using movement primitives in interpreting and decomposing complex trajectories in learning-by-doing. :1427–1433.
Spröwitz A, Tuleu A, Ajaoolleian M, Vespignani M, Moeckel R, Eckert P, D'Haene M, Degrave J, Nordmann A, Schrauwen B et al..  2018.  Oncilla robot: a versatile open-source quadruped research robot with compliant pantograph legs. Frontiers in Robotics and AI, section Bionics and Biomimetics.
Steffen JFrederik, Pardowitz M, Steil JJ, Ritter H.  2010.  Neural competition for motion segmentation. 18th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN). :59–64.
Steffen JFrederik, Pardowitz M, Steil JJ, Ritter H.  2011.  Integrating Feature Maps and Competitive Layer Architectures For Motion Segmentation. Neurocomputing. 74:1372–1381.
Steil JJ.  2002.  Local structural stability of recurrent networks with time-varying weights. Neurocomputing. 48:39–51.
Steil JJ, Sagerer G, Ritter H, Körner E.  2008.  Humans and Humanoids - Perspectives on Research in Cognition and Robotics. KI - Künstliche Intelligenz. 4:33–36.
Steil JJ, Emmerich C, Swadzba A, Grünberg R, Nordmann A, Wrede S.  2013.  Kinesthetic Teaching Using Assisted Gravity Compensation for Model-Free Trajectory Generation in Confined Spaces. Gearing Up and Accelerating Cross-Fertilization between Academic and Industrial Robotics Research in Europe. 94:107–127.
Steil JJ, Ritter H.  1999.  Maximisation of stability ranges for recurrent neural networks subject to on-line adaptation. Proc. European Symposium Artificial Neural Networks. :369–374.
Steil JJ.  2005.  Stability of backpropagtion-decorrelation efficient O(N) recurrent learning. Proc. European Symposium Artificial Neural Networks. :43–48.
Steil JJ, Götting M, Wersing H, Körner E, Ritter H.  2007.  Adaptive scene dependent filters for segmentation and online learning of visual objects. Neurocomputing. 70:1235–1246.
Steil JJ, Wrede S.  2019.  Maschinelles Lernen und lernende Assistenzsysteme - Neue Tätigkeiten, Rollen und Anforderungen für Beschäftigte? Berufsbildung in Wissenschaft und Praxis – BWP. 3:14-18.
Steil JJ.  2005.  Memory in Backpropagation-Decorrelation O(N) Efficient Online Recurrent Learning. LNCS. 3697:649–654.
Steil JJ.  2004.  Neural Dynamics for Task-Oriented Grouping of Communicating Agents. Proc. European Symposium Artificial Neural Networks. :531–536.
Steil JJ, Ritter H.  1999.  Recurrent Learning of Input-Output Stable Behaviour in Function Space: A Case Study with the Roessler Attractor. Proc. Int. Conf. Artificial Neural Networks. :761–766.
Steil JJ.  2007.  Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Networks. 20:353–364.
Steil JJ.  2004.  Backpropagation-Decorrelation: online recurrent learning with O(N) complexity. Proc. Int. Joint Conference Neural Networks. 1:843–848.
Steil JJ, Krüger S.  2013.  Lernen und Sicherheit in Interaktion mit Robotern aus Maschinensicht. Robotik und Gesetzgebung. 2:51–71.
Steil JJ.  2000.  Local input-output stability of recurrent networks with time-varying weights. Proc. European Symposium Artificial Neural Networks. :281–286.

Pages