Biblio

Found 415 results
Author [ Title(Asc)] Type Year
Filters: First Letter Of Last Name is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
P
[Anonymous].  2008.  Proceedings of the 3rd International Colloquium 'Collaborative Research Center SFB 562'. Fortschritte in der Robotik.
Suhadi S., Last C., Fingscheidt T..  2010.  A Priori SNR Estimation Using an Artificial Neural Network. Proc. of Sprachkommunikation 2010 (ITG-FB 225).
Prüfer M., Schmidt C..  1996.  Practical Aspects of Robot Dynamics Identification. Proceedings of the 3rd Int. Symposium on Methods and Models in Automation and Robotics. :971–976.
Stahs T., Wahl F..  1989.  Polyhedral Object Recognition by Hough Space Analysis. Geobild. 51:165-172.
Wojtynek M, Steil JJ, Wrede S.  2019.  Plug, Plan and Produce as Enabler for easy Workcell Setup and Collaborative Robot Programming in Smart Factories. KI - Künstliche Intelligenz. 33(Special Issue: Smart Production 2):151–161.
Röthling F, Haschke R, Steil JJ, Ritter H.  2007.  Platform Portable Anthropomorphic Grasping with the Bielefeld 20-DOF Shadow and 9-DOF TUM Hand. Proc. Int. Conf. on Intelligent Robots and Systems (IROS). :2951–2956.
Thomas U., Wahl F..  2012.  Planning Sensor Feedback for Assembly Skills by Using Sensor State Space Graphs. ICIRA 2012. :696–707.
Stoeter S., Voss S., Papanikolopoulos N., Mosemann H..  1999.  Planning of Regrasp Operations. IEEE International Conference on Robotics and Automation. :245–250.
Hammer B, Steil JJ.  2002.  Perspectives on Learning with Recurrent Neural Networks. Proc. European Symposium Artificial Neural Networks. :357–368.
Winkelbach S., Rilk M., Schönfelder C., Wahl F..  2004.  PatternRecognition (DAGM 2004). Lecture Notes in Computer Science. :129–136.
Winkelbach S., Rilk M., Schönfelder C., Wahl F..  2004.  PatternRecognition (DAGM 2004). Lecture Notes in Computer Science. :129–136.
Winkelbach S., Molkenstruck S., Wahl F..  2006.  Pattern Recognition (DAGM 2006). Lecture Notes in Computer Science. :718–728.
Shareef Z.  2015.  Path planning and trajectory optimization of delta parallel robot. Department of Mechanical Engineering. PhD Thesis
Gutsche R., Stahs T., Wahl F..  1991.  Path Generation with a Universal 3D Sensor. IEEE International Conference on Robotics and Automation Sacramento. :838–843.
Aswolinskiy W, Steil JJ.  2016.  Parameterized Pattern Generation via Regression in the Model Space of Echo State Networks. Proceedings of the Workshop on New Challenges in Neural Computation.
Schmidt C., Prüfer M..  1997.  Parameter Identification in Robot Control. Applied Mathematics and Computer Science. 7:377–399.
O
Neumann K, Steil JJ.  2013.  Optimizing Extreme Learning Machines via Ridge Regression and Batch Intrinsic Plasticity. Neurocomputing. 102:23–30.
Shareef Z, Usman Z, Rana MAsif.  2014.  Optimization of static and dynamic anti-windup compensator using new improved particle swarm optimization algorithm. IEEE 15th International Symposium on Computational Intelligence and Informatics.
Shareef Z, Trächtler A.  2014.  Optimal trajectory planning for robotic manipulators using discrete mechanics and optimal control. IEEE Conference on Control Applications.
Lemme A, Meirovitch Y, Khansari-Zadeh SMohammad, Flash T, Billard A, Steil JJ.  2015.  Open-source benchmarking for learned reaching motion generation in robotics. Paladyn, Journal of Behavioral Robotics. 6:30–41.
Wigand D, Mohammadi P, Hoffmann EMingo, Wrede S, Steil JJ, Tsagarakis N.  2018.  An Open-Source Architecture for Simulation, Execution and Analysis of Real-Time Robotics Systems. SIMPAR.
Belardinelli A, Schneider WX, Steil JJ.  2010.  OOP: Object-Oriented-Priority for Motion Saliency Maps. Workshop on Brain Inspired Cognitive Systems. :370–381.
Belardinelli A, Schneider WX, Steil JJ.  2010.  OOP: Object-Oriented-Priority for Motion Saliency Maps. Workshop on Brain Inspired Cognitive Systems. :370–381.
Steil JJ.  2006.  Online stability of backpropagation-decorrelation recurrent learning. Neurocomputing. 69:642–650.
Steil JJ.  2007.  Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Networks. 20:353–364.

Pages