Biblio

Found 272 results
Author [ Title(Desc)] Type Year
Filters: First Letter Of Last Name is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Rayyes R, Kubus D, Steil JJ.  2018.  Learning Inverse Statics Models Efficiently with Symmetry-Based Exploration. Frontiers in Neurorobotics.
Weirich A, Haumann C, Steil JJ, Schüler S..  2011.  Learning Lab - Physical Interaction with Humanoid Robots for Pupils. Proc. Robotics in Education. :21–28.
Weirich A, Haumann C, Steil JJ, Schüler S..  2011.  Learning Lab - Physical Interaction with Humanoid Robots for Pupils. Proc. Robotics in Education. :21–28.
Weng S, Wersing H, Steil JJ, Ritter H.  2006.  Learning Lateral Interactions for Feature Binding and Sensory Segmentation from Prototypic Basis Interactions. IEEE Trans. Neural Networks. 17:843–862.
Kober J, Gienger M, Steil JJ.  2015.  Learning Movement Primitives for Force Interaction Tasks. ICRA. :3192–3199.
Neumann K, Steil JJ.  2015.  Learning Robot Motions with Stable Dynamical Systems under Diffeomorphic Transformations. Robotics and Autonomous Systems. 70:1–15.
Malekzadeh M, Queißer J, Steil JJ.  2016.  Learning the end-effector pose from demonstration for the Bionic Handling Assistant robot.
Soltoggio A, Reinhart F, Lemme A, Steil JJ.  2013.  Learning the rules of a game: neural conditioning in human-robot interaction with delayed rewards.
Soltoggio A, Reinhart F, Lemme A, Steil JJ.  2013.  Learning the rules of a game: neural conditioning in human-robot interaction with delayed rewards.
Freire A, Lemme A, Steil JJ, Baretto G.  2012.  Learning visuo-motor coordination for pointing without depth calculation. Proc. European Symposium on Artificial Neural Networks. :91–96.
Reinhart F, Steil JJ.  2012.  Learning Whole Upper Body Control with Dynamic Redundancy Resolution in Coupled Associative Radial Basis Function Networks. IROS. :1487–1492.
Steil JJ, Krüger S.  2013.  Lernen und Sicherheit in Interaktion mit Robotern aus Maschinensicht. Robotik und Gesetzgebung. 2:51–71.
Shareef Z, Ahmed A.  2011.  LMI BASED Anti-Windup Controller Designing for Ball and Beam Control System. International Bhurban Conference on Applied Sciences and Technology.
Steil JJ.  2000.  Local input-output stability of recurrent networks with time-varying weights. Proc. European Symposium Artificial Neural Networks. :281–286.
Steil JJ.  2002.  Local structural stability of recurrent networks with time-varying weights. Neurocomputing. 48:39–51.
M
Ritter H, Haschke R, Röthling F, Steil JJ.  2011.  Manual Intelligence as a Rosetta Stone for Robot Cognition. Robotics Research. 66:135–146.
Reinhart F, Neumann K, Aswolinskiy W, Steil JJ, Hammer B.  2018.  Maschinelles Lernen in technischen Systemen. Steigerung der Intelligenz mechatronischer Systeme. :pp.73-118.
Steil JJ, Wrede S.  2019.  Maschinelles Lernen und lernende Assistenzsysteme - Neue Tätigkeiten, Rollen und Anforderungen für Beschäftigte? Berufsbildung in Wissenschaft und Praxis – BWP. 3:14-18.
Rolf M, Steil JJ, Gienger M.  2010.  Mastering Growth while Bootstrapping Sensorimotor Coordination. Int. Conf. on Epigenetic Robotics.
Steil JJ, Ritter H.  1999.  Maximisation of stability ranges for recurrent neural networks subject to on-line adaptation. Proc. European Symposium Artificial Neural Networks. :369–374.
Steil JJ.  2005.  Memory in Backpropagation-Decorrelation O(N) Efficient Online Recurrent Learning. LNCS. 3697:649–654.
Ritter H, Steil JJ, Sagerer G.  2010.  Mit Kopf, Körper und Hand: Herausforderungen Humanoider Roboter. Automatisierungstechnik, special issue on "humnoid robotics". 58:630–638.
Ritter H, Steil JJ, Sagerer G.  2010.  Mit Kopf, Körper und Hand: Herausforderungen Humanoider Roboter. Automatisierungstechnik, special issue on "humnoid robotics". 58:630–638.
Shareef Z, Ahmed A, Iqbal N.  2013.  Mixed sensitivity based dynamical Anti-Windup Compensator design using LMI: An application to constrained hot air blower system. IEEE XXIV International Symposium on Information, Communication and Automation Technologies.
Seidel D, Emmerich C, Steil JJ.  2014.  Model-free Path Planning for Redundant Robots using Sparse Data from Kinesthetic Teaching. Proc. of the Int. Conference on Intelligent Robots and Systems (IROS). :4381–4388.

Pages