Biblio

Found 236 results
Author [ Title(Asc)] Type Year
Filters: Author is Jochen J. Steil  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
L
Rayyes R, Kubus D, Hartmann C, Steil JJ.  2017.  Learning Inverse Statics Models Efficiently. arXiv.
Neumann K, Rolf M, Steil JJ, Gienger M.  2010.  Learning Inverse Kinematics for Pose-Constraint Bi-Manual Movements. From Animals to Animats 11. 11th International Conference on Simulation of Adaptive Behavior, SAB 2010. Proceedings. 6226
Malekzadeh M, Queißer J, Steil JJ.  2015.  Learning from demonstration for Bionic Handling Assistant robot.
Kubus D, Rayyes R, Steil JJ.  2018.  Learning Forward and Inverse Kinematics Maps Efficiently. IROS 2018.
Rolf M, Steil JJ, Gienger M.  2010.  Learning Flexible Full Body Kinematics for Humanoid Tool Use. Int. Symp. Learning and Adaptive Behavior in Robotic Systems (Best Paper Award). :171–176.
Weng S., Steil JJ.  2003.  Learning Compatibitlity Functions for Feature Binding and Perceptual Grouping. Proc. of Int. Conference Artificial Neural Networks. LNCS 2714:60–67.
Wersing H, Steil JJ, Ritter H.  1997.  A Layered Recurrent Neural Network for Feature Grouping. Int. Conf. on Artificial Neural Networks. :439–444.
I
Heuser S, Steil JJ.  In Press.  Ist KI zu kontrollieren? Überlegungen zur Ethik des Zusammenwirkens von Menschen und KI-Maschinen In Steil, J.J. et al. Hrsg.: SYnENZ - Synergie und Intelligenz im Zusammenwirken von Mensch und Maschine: Beurteilen - Messen - Bewerten.
Neumann K, Strub C, Steil JJ.  2013.  Intrinsic Plasticity via Natural Gradient Descent with Application to Drift Compensation. Neurocomputing. 112:26–33.
Neumann K, Steil JJ.  2012.  Intrinsic Plasticity via Natural Gradient Decent. 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2012). Proceedings. :555–560.
Rayyes R, Donat H, Steil JJ, Spranger M.  2021.  Interest-Driven Exploration with Observational Learning for Developmental Robots. IEEE Transactions on Cognitive and Developmental Systems .
Rayyes R, Donat H, Steil JJ.  2021.  Interest-Driven Exploration for Real Robot Applications: Sample-Efficiency, High-Accuracy, and Robustness.
Wrede S, Johannfunke M, Lemme A, Nordmann A, Rüther S, Weirich A, Steil JJ.  2010.  Interactive Learning of Inverse Kinematics with Nullspace Constraints using Recurrent Neural Networks. Proc. 20. Workshop on Computational Intelligence.
Emmerich C, Nordmann A, Swadzba A, Wrede S, Steil JJ.  2012.  Interactive Learning of Inverse Kinematics with Null-space Constraints using Recurrent Neural Networks.
Muehlig M, Steil JJ, Gienger M..  2012.  Interactive Imitation Learning of Object Movement Skills. Autonomous Robots. 32:97–114.
Steil JJ, Wrede S.  2012.  Intelligent Interfaces between Humans and Technology. 22:2.
Wischnewski M, Steil JJ, Kehrer L, Schneider WX.  2009.  Integrating Inhomogeneous Processing and Proto-object Formation in a Computational Model of Visual Attention. Human Centered Robot Systems: Cognition, Interaction, Technology. :93–102.
Steffen JFrederik, Pardowitz M, Steil JJ, Ritter H.  2011.  Integrating Feature Maps and Competitive Layer Architectures For Motion Segmentation. Neurocomputing. 74:1372–1381.
Steil JJ, Ritter H.  1998.  Input-Output Stability of Recurrent Neural Networks with Delays using Circle Criteria. Proc. Int. ICSC/IFAC Symposium on Neural Computation. :519–525.
Steil JJ.  1999.  Input-Output Stability of Recurrent Neural Networks.

Pages