Biblio
.
2000. Wegkoordination mehrerer mobiler Roboter unter Berücksichtigung deterministischer, dynamischer Hindernisse. 16. Fachgepräch Automome Mobile Systeme Karlsruhe (AMS). :140–147.
.
2007. Taktile Sensorik für die Roboter geführte intraoperative Neurochirurgie. CURAC 2007, 6. Jahrestagung der Gesellschaft für Computer- und Roboterassistierte Chirurgie. :3–6.
.
2009. Tactile sensor intended for intraoperative soft tissue robotic applications. CARS 2009, Proc. of the 23th International Congress and Exhibition, International Journal of Computer Assisted Radiology and Surgery. 4 (Supplement 1):300...
.
2007. Tactile sensors for robot guided intraoperative neurosurgery Taktile Sensorik für die Roboter-geführte intraoperative Neurochirurgie. 58. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie e.V. (DGNC).
.
2003. Kritische Analyse endoskopischer Eingriffe in der Kopfchirurgie für die Entwicklung eines robotischen Assistenzsystems. CURAC 2003, Computer und Roboter Assistierte Chirurgie.
.
1994. Graphics & Robotics.
.
1999. Planning of Regrasp Operations. IEEE International Conference on Robotics and Automation. :245–250.
.
2013. Kinesthetic Teaching Using Assisted Gravity Compensation for Model-Free Trajectory Generation in Confined Spaces. Gearing Up and Accelerating Cross-Fertilization between Academic and Industrial Robotics Research in Europe. 94:107–127.
.
2017. Robots in the digitalized workplace. The Wiley Blackwell Handbook of the Psychology of the Internet at Work. :403-422.
.
2006. Online stability of backpropagation-decorrelation recurrent learning. Neurocomputing. 69:642–650.
.
1998. Input-Output Stability of Recurrent Neural Networks with Delays using Circle Criteria. Proc. Int. ICSC/IFAC Symposium on Neural Computation. :519–525.
.
2004. Situated robot learning for multi-modal instruction and imitation of grasping. Robotics and Autonomous Systems. 47:129–141.
.
2000. Robust control in closed loops realised by fast signal transmission of infinite gain neurons. Proc. Int. Conf. Artificial Neural Networks. 1:260–266.
.
2023. Mit KI zu mehr Teilhabe in der Arbeitswelt: Potenziale, Einsatzmöglichkeiten und Herausforderungen. Whitepaper aus der Plattform Lernende Systeme.
.
2011. What do humanoid robots offer to experimental psychology ? Connectionist models of neurocognition and emergent behavior : from theory to applications ; proceedings of the 12th Neural Computation and Psychology Workshop, Birkbeck, University of London, 8 - 10 April 2010. 20:361–371.
.
2006. Unsupervised Clustering of Continuous Trajectories of Kinematic Trees with SOM-SD. Proc. European Symposium on Artificial Neural Networks.
.
2021. "Können Maschinen Ethisches Verhalten Lernen ?" Bericht zum 1. SYnENZ Zirkel der BWG Kommission für Synergie und Intelligenz (SYnENZ) Jahrbuch der Braunschweigischen Wissenschaftlichen Gesellschaft. :117-120.
.
2019. Robotic Systems in Operating Theatres: New Forms of Team-Machine Interaction in Health Care - On Challenges for Health Information Systems on Adequately Considering Hybrid Action of Humans and Machines. Methods of Information in Medicine. 58:e14-e25.
.
2001. Guiding Attention for Grasping Tasks by Gestural Instruction: The GRAVIS-Robot Architecture. Proc. Int. Conf. Intelligent Robots and Sytems. :1570–1577.
.
2005. Trends in Neurocomputing at ESANN 2004. Neurocomputing. 64:1–4.
.
2013. Lernen und Sicherheit in Interaktion mit Robotern aus Maschinensicht. Robotik und Gesetzgebung. 2:51–71.
.
2020. Kollaborative Roboter – universale Werkzeuge in der digitalisierten und vernetzten Arbeitswelt. G. W. Maier, G. Engels, E. Steffen (Hrg.): Handbuch Gestaltung digitaler und vernetzter Arbeitswelten. :323-346.
.
2002. Local structural stability of recurrent networks with time-varying weights. Neurocomputing. 48:39–51.
.
2019. Roboterlernen ohne Grenzen ? Lernende Roboter und ethische Fragen Christiane Woopen, Marc Jannes [Hrsg.] Roboter in der Gesellschaft. Technische Möglichkeiten und menschliche Verantwortung. :15-33.

] 

