Biblio

Found 783 results
[ Author(Desc)] Title Type Year
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Reinhart F, Steil JJ.  2012.  Regularization and stability in reservoir networks with output feedback. Neurocomputing. 90:96–105.
Reinhart F, Steil JJ.  2011.  Neural learning and dynamical selection of redundant solutions for inverse kinematic control. Proc. IEEE Int. Conf. Humanoid Robots. :564–569.
Reinhart F, Steil JJ.  2009.  Goal-directed movement generation with a transient-based recurrent neural network controller. Advanced Technologies for Enhanced Quality of Life. :112–117.
Reinhart F, Steil JJ.  2015.  Efficient Policy Search in Low-dimensional Embedding Spaces by Generalizing Motion Primitives with a Parameterized Skill Memory. Autonomous Robots. 38:331–348.
Reinhart F, Steil JJ.  2008.  Recurrent neural associative learning of forward and inverse kinematics for movement generation of the redundant PA-10 robot. Int. Symp. Learning Adaptive Behavior in Robotic Systems, best paper award. 1:35–40.
Reinhart F, Steil JJ.  2012.  Learning Whole Upper Body Control with Dynamic Redundancy Resolution in Coupled Associative Radial Basis Function Networks. IROS. :1487–1492.
Reinhart F, Steil JJ.  2011.  Reservoir regularization stabilizes learning of Echo State Networks with output feedback. Proc. European Symposium on Artificial Neural Networks. :59–64.
Reinhart F, Shareef Z, Steil JJ.  2017.  Hybrid Analytical and Data-driven Modeling for Feed-forward Robot Control. Sensors. 17(2)
Reinhart F, Steil JJ.  2014.  Efficient Policy Search with a Parameterized Skill Memory. :1400–1407.
Reinhart F, Steil JJ.  2011.  State prediction: a constructive method to program recurrent neural networks. Artificial Neural Networks and Machine Learning – ICANN 2011 : 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I. 6791:159–166.
Reinhart F, Steil JJ.  2009.  Reaching movement generation with a recurrent neural network based on learning inverse kinematics for the humanoid robot iCub. IEEE Conf. Humanoid Robotics. :323–330.
Reinhart F, Steil JJ, Huntsberger TL, Stoica A.  2010.  Tacking reduces bow-diving of high-speed unmanned sea surface vehicles. Int. Symp. Learning and Adaptive Behavior in Robotic Systems. :177–182.
Reinhart F, Lemme A, Steil JJ.  2012.  Representation and Generalization of Bi-manual Skills from Kinesthetic Teaching. IEEE-RAS International Conference on Humanoid Robots. :560–567.
Reinhart F, Steil JJ.  2016.  Hybrid Mechanical and Data-driven Modeling Improves Inverse Kinematic Control of a Soft Robot. Procedia Technology. 26:12–19.
Reinhart F, Steil JJ.  2009.  Attractor-based computation with reservoirs for online learning of inverse kinematics. European Symposium Artificial Neural Networks (ESANN). :257–262.
Reinhart F, Steil JJ.  2011.  A constrained regularization approach for input-driven recurrent neural networks. Differential Equations and Dynamical Systems. 19:27–46.
Reinhart F, Neumann K, Aswolinskiy W, Steil JJ, Hammer B.  2018.  Maschinelles Lernen in technischen Systemen. Steigerung der Intelligenz mechatronischer Systeme. :pp.73-118.
Rennekamp T..  2003.  Analyse und Kompensation von Fahrfehlern bei Mecanum-Wheel-Fahrzeugen. Autonome Mobile Systeme 2003, 19. Fachgespräch, Karlsruhe. :75–82.
Rennekamp T., Homeier K., Kröger T..  2006.  Distributed Sensing and Prediction of Obstacle Motions for Mobile Robot Motion Planning. IEEE International Conference on Intelligent Robots and Systems. :4833–4838.
Rennekamp T..  2005.  Graphbasierte Bewegungsanalyse dynamischer Hindernisse zur Steuerung mobiler Roboter. Autonome Mobile Systeme 2005, 20. Fachgespräch Stuttgart. :295–301.
Rhode M, Narioka K, Stein L, Steil JJ, Ernst M.  2019.  Goal-Related Feedback Guides Motor Exploration and Redundancy Resolution in Human Motor Skill Acquisition. PLOS Computational Biology. 15(3):1-27.
Richter M., Zech S., Westphal R., Klimesch Y., Gösling T..  2007.  Robotic cadaver testing of a new total ankle prosthesis model (german ankle system). Foot Ankle Int. 2007. :1276–1286.
Richter O, Reinhart F, Nease S, Steil JJ, Chicca E.  2015.  Device Mismatch in a Neuromorphic System Implements Random Features for Regression. Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE. :1–4.
Riechmann W., Strutz T., Stahs T..  1992.  Einsatzmöglichkeiten des Codierten Lichtansatzes in der Automobilindustrie. Querschnittseminar Bildverarbeitung der Deutschen Gesellschaft für Zerstörungsfreie Prüfung e.V Berlin.
Rieseler H., Wahl F..  1990.  Fast Symbolic Computation of the Inverse Kinematics of Robots. Proceedings IEEE International Conference on Robotics and Automation IEEE. :462–467.

Pages