Biblio
Regularization and stability in reservoir networks with output feedback. Neurocomputing. 90:96–105.
.
2012. Neural learning and dynamical selection of redundant solutions for inverse kinematic control. Proc. IEEE Int. Conf. Humanoid Robots. :564–569.
.
2011. Goal-directed movement generation with a transient-based recurrent neural network controller. Advanced Technologies for Enhanced Quality of Life. :112–117.
.
2009. Efficient Policy Search in Low-dimensional Embedding Spaces by Generalizing Motion Primitives with a Parameterized Skill Memory. Autonomous Robots. 38:331–348.
.
2015. Recurrent neural associative learning of forward and inverse kinematics for movement generation of the redundant PA-10 robot. Int. Symp. Learning Adaptive Behavior in Robotic Systems, best paper award. 1:35–40.
.
2008. Learning Whole Upper Body Control with Dynamic Redundancy Resolution in Coupled Associative Radial Basis Function Networks. IROS. :1487–1492.
.
2012. Reservoir regularization stabilizes learning of Echo State Networks with output feedback. Proc. European Symposium on Artificial Neural Networks. :59–64.
.
2011. .
2017. .
2014. State prediction: a constructive method to program recurrent neural networks. Artificial Neural Networks and Machine Learning – ICANN 2011 : 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I. 6791:159–166.
.
2011. Reaching movement generation with a recurrent neural network based on learning inverse kinematics for the humanoid robot iCub. IEEE Conf. Humanoid Robotics. :323–330.
.
2009. Tacking reduces bow-diving of high-speed unmanned sea surface vehicles. Int. Symp. Learning and Adaptive Behavior in Robotic Systems. :177–182.
.
2010. Representation and Generalization of Bi-manual Skills from Kinesthetic Teaching. IEEE-RAS International Conference on Humanoid Robots. :560–567.
.
2012. Hybrid Mechanical and Data-driven Modeling Improves Inverse Kinematic Control of a Soft Robot. Procedia Technology. 26:12–19.
.
2016. Attractor-based computation with reservoirs for online learning of inverse kinematics. European Symposium Artificial Neural Networks (ESANN). :257–262.
.
2009. A constrained regularization approach for input-driven recurrent neural networks. Differential Equations and Dynamical Systems. 19:27–46.
.
2011. Maschinelles Lernen in technischen Systemen. Steigerung der Intelligenz mechatronischer Systeme. :pp.73-118.
.
2018. Analyse und Kompensation von Fahrfehlern bei Mecanum-Wheel-Fahrzeugen. Autonome Mobile Systeme 2003, 19. Fachgespräch, Karlsruhe. :75–82.
.
2003. Distributed Sensing and Prediction of Obstacle Motions for Mobile Robot Motion Planning. IEEE International Conference on Intelligent Robots and Systems. :4833–4838.
.
2006. Graphbasierte Bewegungsanalyse dynamischer Hindernisse zur Steuerung mobiler Roboter. Autonome Mobile Systeme 2005, 20. Fachgespräch Stuttgart. :295–301.
.
2005. Goal-Related Feedback Guides Motor Exploration and Redundancy Resolution in Human Motor Skill Acquisition. PLOS Computational Biology. 15(3):1-27.
.
2019. Robotic cadaver testing of a new total ankle prosthesis model (german ankle system). Foot Ankle Int. 2007. :1276–1286.
.
2007. Device Mismatch in a Neuromorphic System Implements Random Features for Regression. Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE. :1–4.
.
2015. Einsatzmöglichkeiten des Codierten Lichtansatzes in der Automobilindustrie. Querschnittseminar Bildverarbeitung der Deutschen Gesellschaft für Zerstörungsfreie Prüfung e.V Berlin.
.
1992. Fast Symbolic Computation of the Inverse Kinematics of Robots. Proceedings IEEE International Conference on Robotics and Automation IEEE. :462–467.
.
1990.