Towards Grasping with Spiking Neural Networks for Anthropomorphic Robot Hands

TitleTowards Grasping with Spiking Neural Networks for Anthropomorphic Robot Hands
Publication TypeConference Paper
Year of PublicationIn Press
AuthorsVasquez-Tieck J.C, Donat H., Kaiser J., Peric I., Ulbrich S., Roennau A., Marius Z., Dillmann R.
Conference NameICANN 2017 - The 26th International Conference on Artificial Neural Networks
Date Published12.2017
PublisherSpringer
Conference LocationAlghero, Sardinia
Keywordsgrasp motion representation, motor primitives., neurorobotics, spiking networks
Abstract

Representation and execution of movement in biology is an active field of research relevant to neurorobotics. Humans can remember grasp motions and modify them during execution based on the shape and the intended interaction with objects. We present a hierarchical spiking neural network with a biologically inspired architecture for representing different grasp motions. We demonstrate the ability of our network to learn from human demonstration using synaptic plasticity on two different exemplary grasp types (pinch and cylinder). We evaluate the performance of the network in simulation and on a real anthropomorphic robotic hand. The network exposes the ability of learning finger coordination and synergies between joints that can be used for grasping.