Biblio

Found 13 results
Author [ Title(Desc)] Type Year
Filters: First Letter Of Last Name is E  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Emmerich C, Reinhart F, Steil JJ.  2012.  Balancing of neural contributions for multi-modal hidden state association. Proc. European Symposium on Artificial Neural Networks. :19–24.
E
He H, Chawla N, Chen H, Choe Y, Engelbrecht A, Deva J, Long L, Minai A, Nie F, Ozertem U et al..  2016.  Editorial IEEE Transactions on Neural Networks and Learning Systems 2016 and Beyond. IEEE Transactions on Neural Networks and Learning Systems. 27:1–7.
F
Denecke A, Clemente IAyllon, Wersing H, Eggert J, Steil JJ.  2010.  Figure-ground segmentation using metrics adaptation in levelset methods. European Symposium on Artificial Neural Networks. :417–422.
K
Steil JJ, Emmerich C, Swadzba A, Grünberg R, Nordmann A, Wrede S.  2013.  Kinesthetic Teaching Using Assisted Gravity Compensation for Model-Free Trajectory Generation in Confined Spaces. Gearing Up and Accelerating Cross-Fertilization between Academic and Industrial Robotics Research in Europe. 94:107–127.
M
Seidel D, Emmerich C, Steil JJ.  2014.  Model-free Path Planning for Redundant Robots using Sparse Data from Kinesthetic Teaching. Proc. of the Int. Conference on Intelligent Robots and Systems (IROS). :4381–4388.
Emmerich C, Reinhart F, Steil JJ.  2013.  Multi-directional Continuous Association with Input-driven Neural Dynamics. Neurocomputing (Special Issue ESANN 2012). 112:47–57.
R
Emmerich C, Reinhart F, Steil JJ.  2010.  Recurrence Enhances the Spatial Encoding of Static Inputs in Reservoir Networks. Proc. Int. Conf. Artificial Neural Networks. :148–153.
Reinhart F, Steil JJ.  2008.  Recurrent neural associative learning of forward and inverse kinematics for movement generation of the redundant PA-10 robot. Int. Symp. Learning Adaptive Behavior in Robotic Systems, best paper award. 1:35–40.
Neumann K, Emmerich C, Steil JJ.  2012.  Regularization by Intrinsic Plasticity and its Synergies with Recurrence for Random Projection Methods. Journal of Intelligent Learning Systems and Applications. 4:230–246.