Found 179 results
[ Author(Desc)] Title Type Year
Search results for Steil  [Reset Search]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Ötting S, Gopinathan S, Maier GW, Steil JJ.  2017.  Why Criteria of Decision Fairness Should be Considered in Robot Design. Workshop Robots in Groups and Teams at ACM Conference on Computer Supported Cooperative Work and Social Computing.
Pardowitz M, Haschke R, Steil JJ, Ritter H.  2008.  Gestalt-Based Action Segmentation for Robot Task Learning. IEEE-RAS 7th International Conference on Humanoid Robots (HUMANOIDS). :347–352.
Queißer J, Reinhart F, Steil JJ.  2016.  Incremental Bootstrapping of Parameterized Motor Skills. Proc. IEEE Humanoids.
Queißer J, Neumann K, Rolf M, Reinhart F, Steil JJ.  2014.  An Active Compliant Control Mode for Interaction with a Pneumatic Soft Robot. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). :573–579.
Rayyes R, Kubus D, Hartmann C, Steil J.  2017.  Learning Inverse Statics Models Efficiently. arXiv.
Rayyes R, Steil JJ.  2016.  Goal Babbling with direction sampling for simultaneous exploration and learning of inverse kinematics of a humanoid robot. Proceedings of the workshop on New Challenges in Neural Computation. 4:56–63.
Reinhart F, Steil JJ.  2012.  Learning Whole Upper Body Control with Dynamic Redundancy Resolution in Coupled Associative Radial Basis Function Networks. IROS. :1487–1492.
Reinhart F, Steil JJ.  2011.  Neural learning and dynamical selection of redundant solutions for inverse kinematic control. Proc. IEEE Int. Conf. Humanoid Robots. :564–569.
Reinhart F, Steil JJ.  2016.  Hybrid Mechanical and Data-driven Modeling Improves Inverse Kinematic Control of a Soft Robot. Procedia Technology. 26:12–19.
Reinhart F, Steil JJ.  2011.  Reservoir regularization stabilizes learning of Echo State Networks with output feedback. Proc. European Symposium on Artificial Neural Networks. :59–64.
Reinhart F, Steil JJ.  2009.  Goal-directed movement generation with a transient-based recurrent neural network controller. Advanced Technologies for Enhanced Quality of Life. :112–117.
Reinhart F, Steil JJ.  2011.  State prediction: a constructive method to program recurrent neural networks. Artificial Neural Networks and Machine Learning – ICANN 2011 : 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I. 6791:159–166.
Reinhart F, Steil JJ.  2008.  Recurrent neural associative learning of forward and inverse kinematics for movement generation of the redundant PA-10 robot. Int. Symp. Learning Adaptive Behavior in Robotic Systems, best paper award. 1:35–40.
Reinhart F, Lemme A, Steil JJ.  2012.  Representation and Generalization of Bi-manual Skills from Kinesthetic Teaching. IEEE-RAS International Conference on Humanoid Robots. :560–567.
Reinhart F, Steil JJ.  2009.  Reaching movement generation with a recurrent neural network based on learning inverse kinematics for the humanoid robot iCub. IEEE Conf. Humanoid Robotics. :323–330.
Reinhart F, Steil JJ.  2015.  Efficient Policy Search in Low-dimensional Embedding Spaces by Generalizing Motion Primitives with a Parameterized Skill Memory. Autonomous Robots. 38:331–348.
Reinhart F, Steil JJ.  2012.  Regularization and stability in reservoir networks with output feedback. Neurocomputing. 90:96–105.
Reinhart F, Steil JJ, Huntsberger TL, Stoica A.  2010.  Tacking reduces bow-diving of high-speed unmanned sea surface vehicles. Int. Symp. Learning and Adaptive Behavior in Robotic Systems. :177–182.
Reinhart F, Steil JJ.  2011.  A constrained regularization approach for input-driven recurrent neural networks. Differential Equations and Dynamical Systems. 19:27–46.
Reinhart F, Shareef Z, Steil JJ.  2017.  Hybrid Analytical and Data-driven Modeling for Feed-forward Robot Control. Sensors. 17(2)
Reinhart F, Steil JJ.  2014.  Efficient Policy Search with a Parameterized Skill Memory. :1400–1407.
Reinhart F, Steil JJ.  2009.  Attractor-based computation with reservoirs for online learning of inverse kinematics. European Symposium Artificial Neural Networks (ESANN). :257–262.