Biblio

Found 179 results
[ Author(Desc)] Title Type Year
Search results for Steil  [Reset Search]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
Gienger M, Muehlig M, Steil JJ.  2010.  Imitating object movement skills with robots — A task-level approach exploiting generalization and invariance. The IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems : Conference Proceedings. :1262–1269.
Gopinathan S, Ötting S, Steil JJ.  2017.  A User Study on Personalized Adaptive Stiffness Control Modes for Human-Robot Interaction. 26th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2017.
Gopinathan S, Ötting S, Steil JJ.  In Press.  A user study on personalized stiffness control and task specificity in physical Human-Robot Interaction. Frontiers in Robotics and AI -- Humanoid Robotics.
Götting M, Steil JJ, Wersing H, Körner E, Ritter H.  2006.  Adaptive scene-dependent filters in online learning environments. New issues in neurocomputing. 13th European Symposium on Artificial Neural Networks 2005. :101–106.
H
Hammer B, Schrauwen B., Steil JJ.  2009.  Recent advances in efficient learning of recurrent networks. European Symposium on Artificial Neural Networks. :213–226.
Hammer B, Steil JJ.  2002.  Perspectives on Learning with Recurrent Neural Networks. Proc. European Symposium Artificial Neural Networks. :357–368.
Haschke R, Steil JJ.  2004.  Input Space Bifurcation Manifolds of RNNs. Proc. European Symposium Artificial Neural Networks. :13–19.
Haschke R, Steil JJ, Ritter H.  2001.  Controlling oscillatory behaviour of a two neuron recurrent neural network using inputs. Artificial Neural Networks - ICANN 2001. 2130:1109–1114.
Haschke R, Steil JJ, Steuwer I, Ritter H.  2005.  Task-Oriented Quality Measures for Dextrous Grasping. Proc. Conference on Computational Intelligence in Robotics and Automation. :689–694.
Haschke R, Steil JJ.  2005.  Input Space Bifurcation Manifolds of Recurrent Neural Networks. Neurocomputing. 64:25–38.
He H, Chawla N, Chen H, Choe Y, Engelbrecht A, Deva J, Long L, Minai A, Nie F, Ozertem U et al..  2016.  Editorial IEEE Transactions on Neural Networks and Learning Systems 2016 and Beyond. IEEE Transactions on Neural Networks and Learning Systems. 27:1–7.
J
Junger I.B, Steil JJ.  2003.  Static Sliding Mode Phenomena in Dynamical Systems. IEEE Trans. Automatic Control. 48:680–686.
K
Klanke S, Lebedev DV, Haschke R, Steil JJ, Ritter H.  2006.  Dynamic Path Planning for a 7-DOF Robot Arm. Int. Conf. Intelligent Robots and Systems. :3879–3884.
Kober J, Gienger M, Steil JJ.  2015.  Learning Movement Primitives for Force Interaction Tasks. ICRA. :3192–3199.
Kopp S, Steil J.  2011.  Editorial Special Corner on Cognitive Robotics. Cognitive Processing. 12:317–318.
Kubus D, Muxfeldt A, Kissener K, Haus JNiklas, Steil J.  2017.  Robust Recognition of Tactile Gestures for Intuitive Robot Programming. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017).
L
Lebedev DV, Steil JJ, Ritter H.  2002.  A New Wave Neural Network Dynamics for Planning Safe Paths of Autonomous Objects in a Dynamically Changing World. Advances in Neural Networks World. :141–146.
Lebedev DV, Steil JJ, Ritter H.  2003.  A Neural Network Model that Calculates Dynamic Distance Transform for Path Planning and Exploration in a Changing Environment. Proc. IEEE Int. Conf. on Robotics and Automation. :4209–4214.
Lebedev DV, Steil JJ, Ritter H.  2005.  An on-line neural network-based approach to dynamic path planning and coordination of two robot arms. Proc. Int. Conf. Intelligent Robotis and Systems. :2411–2416.
Lebedev DV, Steil JJ, Ritter H.  2003.  Real Time Path Planning in Dynamic Environment: a Comparison of Three Neural Network Models. Proc. IEEE Int. Conf. Systems, Man, and Cybernetics. :3408–3413.
Lemme A, Reinhart F, Neumann K, Steil JJ.  2014.  Neural Learning of Vector Fields for Encoding Stable Dynamical Systems. Neurocomputing. 141:3–14.
Lemme A, Meirovitch Y, Khansari-Zadeh SMohammad, Flash T, Billard A, Steil JJ.  2015.  Open-source benchmarking for learned reaching motion generation in robotics. Paladyn, Journal of Behavioral Robotics. 6:30–41.
Lemme A, Steil JJ.  2015.  A flat neural network architecture to represent movement primitives with integrated sequencing. :481–486.
Lemme A, Meirovitch Y, Khansari-Zadeh SMohammad, Flash T, Billard A, Steil JJ.  2014.  Multi-criteria benchmarking of movement generating dynamical systems for learning-from-demonstrations.
Lemme A, Reinhart F, Steil JJ.  2014.  Semi-supervised Bootstrapping of a Movement Primitive Library from Complex Trajectories. :726–732.

Pages